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Abstract: A recent no-go theorem gives an extension of the Wigner’s friend argument 

that purports to prove that “Quantum theory cannot consistently describe the use of 

itself.” The argument is complex and thought provoking, but fails in a straightforward 

way if one treats QM as a statistical theory in the most fundamental sense, i.e. if one 

applies the so-called ensemble interpretation. This explanation is given here at an 

undergraduate level, which can be edifying for experts and students alike. A recent paper 

has already shown that the no-go theorem is incorrect with regard to the de Broglie Bohm 

theory and misguided in some of its general claims. This paper’s contribution is three 

fold. It shows how the extended Wigner’s friend argument fails in the ensemble 

interpretation. It also makes more evident how natural a consistent statistical treatment of 

the wave function is. In this way, the refutation of the argument is useful for bringing out 

the core statistical nature of QM. It, in addition, manifests the unnecessary complications 

and problems introduced by the collapse mechanism that is part of the Copenhagen 

interpretation. The paper uses the straightforwardness of the ensemble interpretation to 

make the no-go argument and its refutation more accessible. 

Introduction 
 The recent no-go theorem by D. Frauchiger and R. Renner (DF&RR) 1 makes the 

strong claim that quantum mechanics is violated in a certain case when multiple 

observers are making predictions. These claims have been successfully challenged by D. 

Lazarovici and M. Hubert. 2 These authors point out that the no-go arguments do not 

apply to the de Broglie Bohm interpretation because it has no collapse mechanism and 

thus does not fall under the implicit assumptions of the proof. Here we show that the 

theorem fails more generally since its implicit assumptions do not apply to the ensemble 

interpretation, which is the natural statistical understanding of QM (therefore, in 

principle, allows no collapse).3  The ensemble interpretation is a newer approach first 

championed generically by Einstein but only developed formally by L. Ballentine,4 

starting with his seminal paper in 1970.5 This approach has been, recently, more 

specifically developed in a new textbook.6,7 The ensemble approach simply treats the 

wave function as a device for describing the quantum state statistically. The only 

 
1 D. Frauchiger, R. Renner, Quantum theory cannot consistently describe the use of itself, Nat. Commun. 9 

No. 1038 (2018). 
2 D. Lazarovici, M. Hubert, How Quantum Mechanics can consistently describe the use of itself, Sci. Rep. 9 

No. 470, (2019) 
3 A. Rizzi, A Simple Approach To Measurement in Quantum Mechanics, to be published. 
4 L. E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific Publishing, 

Singapore,1998) 
5 L. E. Ballentine, The Statistical Interpretation of Quantum Mechanics, Rev. Mod. Phys. 42 No. 4, 358-

381 (1970) 
6 A. Rizzi, Physics for Realists: Quantum Mechanics (IAP Press, Baton Rouge, 2018). 
7 The ensemble interpretation is used to explain the real meaning PBR theorem in A. Rizzi, Does the PBR 

Theorem Rule out a Statistical Understanding of QM? Found. of Phys., 48 (12), 1770-1793. 
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evolution of the wave function is that due to the Schrödinger equation. A given 

measurement establishes a one-to-one relationship between 1) the ontic value of a certain 

observable of, e.g., a specific particle of an ensemble whose statistical state is described 

by the wave function and 2) the ontic value of the “pointer” of a member of the ensemble 

of measuring devices. Because the measurement requires an interaction, the wave 

functions describing the ensembles of measuring devices and the particle become 

entangled during the measurement. The evolution of the state of the particle/device 

system before, during and after the measurement is described solely by the Schrödinger 

equation (SE). Thus, it does not, in general, collapse to the value being measured because 

the SE does not in general predict this. 

 The DF&RR no-go theorem is an extended Wigner’s friend argument. It is, thus, 

helpful to review the original (un-extended) Wigner friend argument.8 In it, Wigner 

argued as follows for a consciousness-driven collapse of the wave function during a 

measurement. Suppose one is given a particle in a spin right state, so that we have 

1 = → . Wigner’s friend, F, using an up/down Stern Gerlach (SG) device will either 

measure it to be up or down. Then, according to the “collapse to an eigenstate on 

measurement” rule: after the measurement, the friend, F, will say the system state is 

either: 

(1)   light F
 

      or     no light F
 

 − .  

 Here F


 ( F


) represent the brain states of F and light (no-light) represent the 

state  of the light used to detect the particle in the up (down) part of the SG. 

 However, Wigner, who knows F did the experiment but not the results, calculates 

the state to be: 

(2)  ( )1

2
light F no light F 

  
 +  −  

Without something to distinguish the states of the two observers, they must be the same 

and thus the system cannot be represented by both (1) and (2). One can resolve the 

contradiction by invoking consciousness collapse, i.e., the idea that F collapses the state 

because he knows the value of the measurement, but W does not. Notice how, in this ad 

hoc resolution, each person, in a way, creates his own separate world!9 

 Now, the extended Wigner’s friend argument involves four experimenters. There 

are two labs with one experimenter in each lab, and one supervisor for each lab. The 

experimenters are given names and diagrammed in Figure 1. The extended Friend 

argument shows: 1) W ’s calculations will directly predict that he will measure his lab 

(his friend, F, and the things F measures) to be in a state called “ok,” 2) while F  will 

predict that W will measure the opposite state (called fail) and, indeed, using F , F and 

W ’s predictions, W would predict himself to measure fail. In short, proceeding directly 

from his own perspective, W predicts the state of his lab to be ok, whereas proceeding 

through F , F and W ’s perspectives he predicts he will see fail. This is a clear 

contradiction. 

 

 
8 Wigner, Remarks on the Mind-Body Question in I. J. Good, (ed.) The Scientist Speculates (London: 

William Heinemann, Ltd., 1961; New York: Basic Books, Inc., 1962), ch. 13, pg 179. 
9 For the analysis in the ensemble interpretation see reference 3. 
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Figure 1: Wigner’s brother, W , supervises a lab ( L ) in which a 

friend, F , does an experiment. Wigner himself, W, supervises a 

different lab (L) in which his own friend, F, does an experiment. 

  

 The core of this paper begins in the next section with a top level description of the 

extended Wigner’s friend thought experiment. That top-level description gives the 

argument, which we summarized above, that purportedly shows that different observers, 

each properly applying quantum theory, can yield results that contradict each other. It is 

as if observer A applies Newtonian mechanics to a body and predicts that he will see the 

body accelerate upward while observer B predicts that observer A will see the body  

accelerates downward.  

 The arguments in the top level view section use the calculations given in the 

sections that follow it. In particular, just after the top level argument, there is a section 

that gives the details of the evolution of the system through the various steps of the 

thought experiment for the case of the ensemble approach in which there is no collapsing 

of the wave function, but only pure Schrödinger equation evolution. The next section 

gives the evolution of the system through the various steps of the thought experiment for 

the case when F collapses the state of the coin to tails, which is needed for some of the 

perspectives used in the DF&RR approach. In these last two sections, equations are given 

for each step of the experiment, even those ignored in DF&RR’s formal analysis; this is 

done especially in order manifest the nature of the ensemble approach in which every 

measurement entangles the measuring device and the thing measured. A final section 

summarizes the analysis. 

  

The Extended Wigner’s Friend (EWF) Argument, Top View 
 To make the argument of the no-go paper1 more accessible, I break the argument 

into blocks, drawing out the key points of the argument and where it fails for the 

ensemble interpretation. Note that DF&RR make implicit assumptions about the nature of 

 

W  
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L  

 

W  
 

F  

 

F  
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measurement. In what follows, I manifest the standard textbook assumptions that follow 

their reasoning and yield their result.  

 The experiment proceeds as follows. Wigner, W, oversees a lab, L, and his twin 

brother, W , oversees his own lab, L , pictured in Figure 1. Notice Wigner (W) has a 

friend, F, that runs his lab and his brother (W ) has a friend, F that runs his. 

 A series of instructions is given to the four participants. Everyone knows what 

those instructions are. They are (see box 1 DF&RR) as follows. The variables and wave 

functions referred to below are defined and calculated, respectively, in later sections. 

 

EWF Instructions: 

At time 00, Agent F will measure coin and then set the spin of a 

particle to spin right (→ ) if it comes up tails, and to spin down 

( ) if its heads. This gives for the overall state, in the ensemble 

interpretation: 2 .  

At time 10, agent F will measure the spin S, giving 3  for the overall 

system state; F measures spin up. 

At time 20, Agent W measures whether his barred lab ( L ) is ok or not 

(which we call, respectively ok  or f ). ok  is a particular state of 

F ’s brain and the coin in the barred lab, giving 4 . After this, 

W announces his result to W, giving 5 . 

At time 30, W measures whether his unbarred lab (L) is ok or not 

(which we call ok or f), giving 6  , then he announces his result to 

F , giving 7 . 

At time 40, if W  measures ok and W measures ok then the experiment 

stops if not one cycles back to time 00 and repeats the steps.  

  

 In what follows we consider only that pass through the above sequence that 

reaches the halting condition (i.e., W  measures ok and W measures ok). 

 To start, we analyze what W will see from two points of view: from F ’s  

perspective or from that of W himself. Then, we bring in F and W ’s perspective and 

generate our direct contradiction. 

 

A. From F ’s perspective: 

 F flips his quantum coin and gets tails. DF&RR assume (as Copenhagen 

Interpretation does) that F ’s knowledge collapses the wave function (for him) to 

2c (see section below titled EWF State Predictions II) --where the subscript c indicates 

that we are speaking about a wave function that assumes this collapse. We can then 

predict that, when W measures his lab with an instrument calibrated to readout either ok 
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or fail (f), the instrument will read “fail”.10 We can see this by noting that 7 0c L
ok = . 

(see equation (21) in EWF II). Since the ok / f  is a complete orthonormal basis, W will 

read fail. 

 

B. From W’s perspective: 

 W knows that W reads the ok state because it is announced to him at time 20. 

And, since W has not observed the state of the coin in L , it seems that the wave function 

at time 10 is therefore not collapsed, i.e. not forced into an eigenstate in the heads/tails 

basis (for he does not know the result of this state). Thus, the wave function is 2 , as 

given in the section titled EWF I and not 2c . This different starting wave function, in 

turn, means the state of the system is also different for each later step of the experiment 

listed above. Those wave functions are also given in section EWF I and are labeled 

without the subscript c, as no collapse is assumed. Now, using these different states, one 

can see that W will predict that at time 40, there is a 1/12 chance that W will measure ok, 
11 (that state of W knowing the lab (L) to be ok, we label okW ) and W will measure ok  

(which we label 
ok

W ). We see this by noting that: ( )7 1/ 12ok ok
W W = --see 

equation (12), (to avoid notational clutter, we have omitted the ok/ok  states and some of 

the ket states associated with W and W --which have components which attach to ok and 

ok respectively). Thus, it is indeed possible to meet the halting condition, so we assume 

we have. Hence, W predicts he will measure his lab to be in the ok state. However, as 

seen in the last line in subsection A above, from F ’s perspective W will read fail! We 

already have a contradiction of sorts, but you may argue they are in different worlds. So, 

following DF&RR, let us bring it home.  

 

 

C. Bringing in F and W ’s perspective,  

 Assuming F measures the spin to be up, then, by 3  (F does not measure the coin 

directly so apparently doesn’t collapse it), F knows immediately after time 10 that 

F knows that the coin toss gave tails, so F can deduce, using the “collapsed” wave 

function, 7c  (note location of fFW  in equation (21)), that F will think (right after 

time 30) that W will measure L to be in the fail state, so F himself obviously knows W 

will measure L to be in the fail state as well. 

 Assuming, as we posited above, that W measures L to be in the ok state then 

W can deduce that from 4 (W does not collapse the spin or the coin measurement) that F 

knows that the spin of the particle is up, from which W can deduce, following F’s 

reasoning in previous paragraph, that F will think that W measures L to be in the fail 

state. And, thus, we have that W thinks W will measure L in the fail state. 

 
10 In our analysis, we do not formally breakout W’s measurement instrument. One can think of the W in our 

equations as representing the physical state of W’s brain (including all the relevant neurological variables) 

along with the state of the instrument he uses. 
11 Note, one gets 1/12 whether one allows W to collapse his measured systems or not. 
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 Lastly, because W announces to W that he has found his lab’s state to be in ok , W 

can deduce that W will think he (W himself) will observe his lab to be in the fail state. So, 

W himself thinks his lab is in the fail state after time 30. But, arguing directly from 

W’s perspective in B above, we found W thought his lab was in the ok state! A direct 

contradiction! Logically, W may have his own world but it better be consistent with 

itself! 

 You see the collapse mechanism has made a mess of the analysis. Once we 

recognize that there is no collapse, this mess goes away and everything falls out. We only 

need to use the states represented by the wave function in the non-collapse (ensemble 

interpretation) section, EWF I. In this case, the arguments in subsection A do not go 

through and we see that 7 0
LokW  , so W can measure his lab to be in ok or fail! The 

reasoning in subsection B is unchanged except for the conclusion based on subsection A. 

In subsection C, the reasoning of the first and second paragraphs are incorrect because 

they are based on the collapsed wave function and reasoning from subsection A. The net 

result is that again we cannot conclude that W will necessarily measure his lab to be in 

the fail state, so there is no longer any contradiction. 

 Now, having seen the argument and its resolution in top view, we move to the 

details of the calculation of the state evolution, first in the case of the simple Schrödinger 

equation evolution of the ensemble interpretation and then in the case of collapse. 

 

 

 

 

 

 

The EWF State Predictions I 

(no collapse, ensemble interpretation) 
 The experiment proceeds as follows. Recall Wigner, W, oversees a lab, L, and his 

twin brother, W , oversees his own lab, L , pictured in Figure 1. Wigner (W) has a friend, 

F, that runs his lab and his brother (W ) has a friend, F that runs his. 

 We start in the top lab ( L ) where a quantum coin is put in the state: 

 (3)  Coin State: ( )1
| 2 |

3
h t +     which is called C 

F  “tosses” the coin, and sets a spin ½ particle in the following by the following rules: 

 If heads, set to | . If tails, set to |→ . The spin particle is called S 

The state of the entire system before the experiment begins is written: 

 ( )1

1
| | 2 | | | | | |

3
h t F S F W W  =  +        

where F , F , W and W will be seen to have multiple components. For example, W has 

two parts, one representing his knowledge of  L’s state and one representing his 

knowledge of W ’s state. 

 For ok/fail type testing in our experiment, we need to define ok/fail 

bases for the spin states and the coin states respectively:  
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  ( )
1

| | |
2

ok = −  ,    ( )
1

| |
2

ok h t= −  ; 

  (ok is unbarred as particle is taken to be in unbarred lab 

  ok is barred as coin is taken to be in barred lab)  

Note, by picking superposition states, we have a chance of generating our 

contradiction. 

 For measuring the state of L , one must measure the state of the 

coin and F ’s brain. Thus, we have for example: 

 W measures: ( )
1

| | | |
2

h t
L

ok h F t F=  −   ,      

   ( )
1

|  | | | |
2

L L h tfail f h F t F =  =  +     

 For measuring the state of L , we must measure the state of the 

particle’s spin and F’s brain. Thus, we have, for example: 

 W measures:  ( )
1

| | | | |
2

Lok F F
 

 =  −      

   ( )
1

| | | | |
2

L L
fail f F F

 
  =  +    

 Now, we go through the parts of the experiment as given in box 1 of the paper of 

DF&RR 1 and show the evolution of the state that corresponds to each step. 

Recalling the original state: 

(4) ( )1

1
| | 2 | | | | | |

3
h t F S F W W  =  +        

The steps are labeled in bold following Box 1 in reference 1. 

(step 00)  F measures the coin and sets system S per above instructions: 

(5) ( )2

1
| | | | 2 | | | | | |

3
h th F t F F W W  =    +  →      

(step 10)  F measure S  

  

(6) ( )3

1
| | | | | | | | | | | | | | |

3
h t th F F t F F t F F W W

  
 =    +    +        

 Decomposing 3 into ,ok f , basis for use in next step giving: 

 33 3|
L L

L L
ok ok f f   = +  , 

  

(7)      ( )( )3

1
| | | 2 | | | | | |

6 L L
F ok F F f W W
  

 = −   +  +      

 

 

(step 20) W  measures L in the 
L

ok /
L

f basis: 
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(8) ( )( )4

1
| | | | 2 | || | | | |

6
Lok fL L

F ok W F F f W WW W
  

 = −    +  +      

Note, here we have split  W  into LWW W  to prepare for the two measurements W 

will make; one of W and one of  L. 

  

 W measures W  (because W announces to W) in 
ok

W /
f

W  basis resulting in: 

(9)

( )( )5

1
| | | | | 2 | || | | | | |

6
Lok ok f fL L

F ok W WW F F f W WW W
  

 = −     +  +       

Here: |
ok

WW   ( |
f

WW  ) represents the state of W’s brain associated with him knowing 

that W measures L  in the fail (ok) state. 

 Then, transforming to the 
L

ok /
L

f basis for use in next step: 

55 5| L LL L
ok ok f f   = +  

 ( )
1

| | | | |
2

Lok F F
 

 =  −   ,  ( )
1

| | | |
2L

f F F
 

=  +    

 

(10)

5

| | | | | | | | | | | |1
|

12 3 | | | |

L L LL L Lfok ok f ok ok

L

L L f f

ok ok W WW ok f W WW f ok W WW
W

f f W WW


    +    −    
  =
 +    
 

 

(step 30) W measures L in 
L

ok /
L

f  basis   

(11) 
6

| | | | | | | |1
|

12 | | | | 3 | | | |

L ok L okL L fok ok f

L f L fL L fok ok f

ok W ok W WW ok W f W WW

f W ok W WW f W f W WW


     +    
  =
  −     +    
 

 

 

F measures W (W announces to F ) in /ok fW W  basis  

(Note: up to this point, to simplify notation we have not carried a second ket for F ’s 

measurement of W) 

(12) 
( )

( )
7

| | | | | |
1

|
12 | | 3 | | | |

L ok okL L fok ok f

L f fL L fok ok f

ok W WW f W WW ok W FW

ok W WW f W WW f W FW



   +    
 

 =  
+ −   +     
 

 

Here, the physical state of F ’s brain associated with him knowing W is in the fail state is 

written fFW . The state when he knows W is in the ok state is written: okFW . 

 

 

 Converting to | h F and t F basis: 
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(13) 

( )

( )

( )

( )

7|

| | | |

| |

| | | 3 |
1

24 | | | |

| |

| | 3 | |

L ok ok fok ok f

h

L f f fok ok f

L ok ok f f ok ok

t

L f f f f ok ok

ok W FW W WW W WW

h F

f W FW W WW W WW

ok W FW W WW W WW

t F

f W FW W WW W WW

  =

      +    
  +  

+   −  +    
  

     −   
    

+    +   
   









  

 

 

 

 

The EWF State Predictions II 

(with F  collapse of coin state) 

 Now, we consider the case in which F ’s observation of the coin state collapses 

that state to an eigenstate (heads or tails). In following the below analysis, recall in our 

analysis that only he who actually does a measurement collapses the state. Those who 

merely speculate about someone else’s measurement do not collapse the state. In our 

EWF II analysis below, only F collapses a state, so all of the rest of the measurements 

evolve according to the Schrödinger equation, i.e., with no collapse. 

 Recall the following notation: to distinguish the below (incorrect) wave functions 

that invoke collapse to the tails eigenstate from the above (correct) wave functions, we 

insert a subscript “c” before the number that indexes the stage of the evolution of the 

system. 

 

The initial state remains: 

(14) ( )1

1
| | 2 | | | | | |

3
h t F S F W W  =  +        

(step 00)  F measures the coin to be tails and then sets system S  to |→  per above 

instructions:  

(15) ( )2

1
| | | | | | | | | | | | |

2
c t tt F F W W t F F W W  =  →     =  +        

Notice F  has collapsed the coin state to the tails eigenstate. 

 

(step 10)   F measure S    (assuming no collapse to + ½ , i.e., up)   

Now, F doesn’t deduce anything about his own knowledge, so doesn’t apply collapse. No 

one else deduces anything from F’s knowledge so the spin state is not collapsed for 

anyone. 

(16) ( )3

1
| | | | | | | | |

2
c tF F t F W W

 
 =  +        

 Decomposing 3 into ,ok f , basis gives: 
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( )

( )
3

| | | |1
| | |

2 | | | |
c

L

L

F F ok
W W

F F f


 

 

 −  −   +
   =  
 +  +  
 

 

         ( ) ( )( )1
| | | | | |

2 L L
ok f F F W W

 
= − +  +      

(step 20) W  measures L in the 
L

ok /
L

f basis:  

(17) ( ) ( )4

1
| | | | | | | |

2
c Lok fL L

F F ok W f W WW W
 

 =  +   −  +    

(As an aside notice, at this point, due to entanglement with W , we no longer have: 

t
L L

F t ok f= − +  of 3c  . This reintroduces the heads state, we no longer have a 

simple tails state!) 

 W measures W  (because W announces to W) in 
ok

W /
f

W  basis resulting in:  

(18)    ( ) ( )5

1
| | | | | | | | | |

2
Lok ok fc fL L

F F ok W WW f W WW W
 

 =  +   −   +     

 Then, transforming to the 
L

ok /
L

f basis for use in next step: 

 55 5| L LL L
ok ok f f   = +  

 ( )
1

| | | | |
2

Lok F F
 

 =  −   , ( )
1

| | | |
2L

f F F
 

=  +    

(19)  ( )5

1
| | | | | | |

2
L Lok ok fc fL L

ok W WW f W WW f W   = −   +      

   

 

 

(step 30) W measures L in 
L

ok /
L

f  basis:   

(20) ( )6

1
| | | | | |

2
c L fok ok f fL L

ok W WW f W WW f W  = −   +     

 

F measures W (W announces to F ) in /ok fW W  basis 

(For F , the state will collapse to the eigenstate corresponding to the value he measures, 

but since we do not know what value he gets, we keep it pre-collapsed. NB, this is the 

last state that this system enters and thus collapsed state is not needed for input to another 

calculation.) 

 The physical state of F ’s brain associated with him knowing W is in the fail state 

is written fFW . The state when he knows W is in the ok state is written: okFW . 

(21) ( )7

1
| | | | | |

2
c L f fok ok f fL L

ok W WW f W WW f W FW  = −   +     

Convert to | h F and t F basis using 
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 ( )
1

| | | |
2

h t
L

ok h F t F=  −   , ( )
1

|  | || | |
2

h tL
f h F t F =  +    

( ) ( )( )7

1
| | | | | | | | | | | | | |

2
c h t h t L f fok ok f f

h F t F W WW h F t F W WW f W FW   = −  −     +  +     

 

(22) 
( )

( )
7

| | | | | |
1

| |
2 | | | | |

h ok ok f f

c L f f

t ok ok f f

h F W WW W WW
f W FW

t F W WW W WW


   −  +  
   = 
 
 +     +  
 

 

 

 

Conclusion 
 We have seen the evolution of the states with and without collapse and have seen 

that the ad hoc nature of the collapse postulate creates a confusion and finally a 

contradiction in QM, at least in the way that DF&RR apply it. By contrast, a 

straightforward statistical interpretation, the ensemble interpretation, gives no 

contradiction and gives a clear understanding of what happens. As explained in a 

previous paper,3 the SE development of the wave function has no collapse, so there is no 

reason to insert one. In that sense, inserting one actually constitutes introducing a new 

theory, one distinct from ordinary quantum mechanics.  

 The contradictions that result from the no-go theorem should be a cautionary tale 

against the use of the idea of collapse in foundational discussions of QM. It can serve to 

remind us that our habits lean heavily towards a collapse view, even when we (e.g., 

DF&RR) are discussing interpretations such as the many worlds or de Broglie Bohm.12 

Working through the theorem in light of the ensemble interpretation can help us amend 

those habits and see how much simpler QM can actually be without the ad hoc collapse 

postulate. QM is obviously a statistical theory, measurement is an integral part of QM 

and is, thus, naturally also treated statistically. Moreover, students can follow the 

argument and its resolution, and thus can also learn these things, as well as how to 

properly derive, in some detail, the state evolution that occurs during measurements. 
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